Sidney Ells at Fort McMurray
Dr. Karl Clark in his oil sands lab
Bitumen separated at the International Bitumen Company Ltd.
  • Tar Sands, Athabasca River, Alberta, n.d. Source: Geological Survey of Canada/Library and Archives Canada, PA-038166

    The Geological Survey of Canada initiates exploration of the oil sands of the Athabasca region on the part of the federal government.

    Tar Sands, Athabasca River, Alberta, n.d.
    Source: Geological Survey of Canada/Library and Archives Canada, PA-038166

  • Drilling plant at Victoria, Alberta, 1898. Source: Glenbow Archives, NA-302-11

    Drilling in search of a basement reservoir of oil is the initial focus of development in Alberta’s oil sands.

    Drilling plant at Victoria, Alberta, 1898
    Source: Glenbow Archives, NA-302-11

  • Alfred von Hammerstein on horseback, ca. 1900. Source: Glenbow Archives, PA-3920-1

    Alfred von Hammerstein is the first independent entrepreneur to attempt to capitalize on the petroleum riches of the oil sands.

    Alfred von Hammerstein on horseback, ca. 1900
    Source: Glenbow Archives, PA-3920-1

  • Sidney Ells at Clearwater River tar sands plant, August 1931. Source: Canada. Dept. of Mines and Technical Surveys/Library and Archives Canada, PA-014454

    The federal government renews its investigation of the oil sands by sending Sidney Ells to Athabasca to conduct field and survey work.

    Sidney Ells at Clearwater River tar sands plant, August 1931
    Source: Canada. Dept. of Mines and Technical Surveys/Library and Archives Canada, PA-014454

  • View of demonstration experimental pavement laid in Edmonton, Alberta, 1915. Source: Provincial Archives of Alberta, A3399

    Throughout the 1920s, efforts to commercially develop the oil sands focused upon its possible use as a paving surface for roads and sidewalks.

    View of demonstration experimental pavement laid in Edmonton, Alberta, 1915
    Source: Provincial Archives of Alberta, A3399

  • Henry Marshall Tory, the first president of the University of Alberta, was instrumental in founding the Scientific and Industrial Research Council of Alberta, n.d. Source: University of Alberta Archives, 69-152-003

    The Scientific and Industrial Research Council of Alberta is founded.

    Henry Marshall Tory, the first president of the University of Alberta, was instrumental in founding the Scientific and Industrial Research Council of Alberta, n.d.
    Source: University of Alberta Archives, 69-152-003

  • Karl Clark and Sidney Blair built a model oil sands separation plant in the basement of the University of Alberta power plant. Source: University of Alberta Archives, 69-97-457

    Karl Clark builds his first model hot-water separation plant.

    Karl Clark and Sidney Blair built a model oil sands separation plant in the basement of the University of Alberta power plant.
    Source: University of Alberta Archives, 69-97-457

  • Absher’s set-up on Saline Creek, near Fort McMurray, 1929. Source: University of Alberta Archives, 77-128-27

    Jacob Absher attempts in situ extraction of oil from oil sands.

    Absher’s set-up on Saline Creek, near Fort McMurray, 1929
    Source: University of Alberta Archives, 77-128-27

  • Prospectus for the International Bitumen Company Ltd., n.d. Source: Provincial Archives of Alberta, PR1971.0356.544a,b.ProspectusOf.IBC.1

    Robert Fitzsimmons founds the International Bitumen Company Ltd.

    Prospectus for the International Bitumen Company Ltd., n.d.
    Source: Provincial Archives of Alberta, PR1971.0356.544a,b.ProspectusOf.IBC.1

  • Karl Clark’s third model plant is relocated to the Clearwater River. Sidney Ells is placed in charge of mining operations. Source: University of Alberta Archives, 77-128-13

    Federal and provincial governments cooperate to develop Clearwater River oil sands separation plant.

    Karl Clark’s third model plant is relocated to the Clearwater River. Sidney Ells is placed in charge of mining operations.
    Source: University of Alberta Archives, 77-128-13

  • Max Ball, ca. 1940. Source: University of Alberta Archives, 89-120-008

    Max Ball, J.M. McClave and B.O. Jones of Denver, Colorado, organize Abasand Oils Ltd.

    Max Ball, ca. 1940
    Source: University of Alberta Archives, 89-120-008

  • Abasand Oils Ltd. plant, ca. 1941. Source: Provincial Archives of Alberta, PR1985.0333.DevelopmentofAthabaska.O.S.DeskCopy.021 - detail

    Construction of Abasand Oils Ltd. oil sands separation plant on Horse River is completed.

    Abasand Oils Ltd. plant, ca. 1941
    Source: Provincial Archives of Alberta, PR1985.0333.DevelopmentofAthabaska.O.S.DeskCopy.021 - detail

  • Little was left of the Abasand plant after the fire. Source: University of Alberta, 84-25-132

    Abasand Oils Ltd. oil sands separation plant burns down.

    Little was left of the Abasand plant after the fire.
    Source: University of Alberta, 84-25-132

  • The completed Alberta Government Oil Sands Project plant, ca. 1950. Source: University of Alberta, 91-137-070 - detail

    Alberta Government Oil Sands Project Plant at Bitumount succeeds in separating crude oil from oil sands.

    The completed Alberta Government Oil Sands Project plant, ca. 1950
    Source: University of Alberta, 91-137-070 - detail

  • Cover of Sidney Blair’s Report on the Alberta Bituminous Sands commissioned by the Government of Alberta, 1950. Source: Provincial Archives of Alberta, PR1971.0345.box24.503

    Alberta government issues report on oil sands potential.

    Cover of Sidney Blair’s Report on the Alberta Bituminous Sands commissioned by the Government of Alberta, 1950
    Source: Provincial Archives of Alberta, PR1971.0345.box24.503

  • Sidney Kidder, Sidney Blair, George Hume, and Elmer Adkins (l to r) at the Edmonton portion of the Athabasca Oil Sands Conference at the University of Alberta, 1951. Source: Provincial Archives of Alberta, PA3152

    Athabasca Oil Sands Conference establishes an Alberta oil sands policy and stimulates commercial interest in the resource.

    Sidney Kidder, Sidney Blair, George Hume, and Elmer Adkins (l to r) at the Edmonton portion of the Athabasca Oil Sands Conference at the University of Alberta, 1951
    Source: Provincial Archives of Alberta, PA3152

  • Montreal-businessman Lloyd Champion incorporates Great Canadian Oil Sands Ltd. (GCOS) in 1953. Champion later sells most of his shares in the company before the GCOS plant opens under Sun Oil Company’s financing and leadership. Source: Courtesy of University of Alberta Archives, #83-160

    Great Canadian Oil Sands Ltd. incorporates.

    Montreal-businessman Lloyd Champion incorporates Great Canadian Oil Sands Ltd. (GCOS) in 1953. Champion, shown here ca. 1960s, later sells most of his shares in the company before the GCOS plant opens under Sun Oil Company’s financing and leadership.
    Source: University of Alberta Archives, #83-160

  • A cross-section of the Cold Lake area deposit shows the depth of the oil sands layer that makes the bitumen in this deposit recoverable only through in situ extraction methods. Source: Courtesy of Alberta Innovates

    Early in situ pilot tests begin on the Peace River and Cold Lake area oil sands deposits; underground experiments along the Cold Lake deposit lead to the development of the Cyclical Steam Stimulation (CCS) bitumen recovery method.

    A cross-section of the Cold Lake area deposit shows the depth of the oil sands layer that makes the bitumen in this deposit recoverable only through in situ extraction methods.
    Source: Courtesy of Alberta Innovates

  • Great Canadian Oil Sands Ltd. plant during its first week of operation, north of Fort McMurray, Alberta, 1967. Source: Courtesy of Suncor

    Great Canadian Oil Sands Ltd. begins production.

    Great Canadian Oil Sands Ltd. plant during its first week of operation, north of Fort McMurray, Alberta, 1967
    Source: Courtesy of Suncor

  • Canada’s Prime Minister Pierre Elliott Trudeau and Alberta Premier Peter Lougheed, November 1, 1977; Trudeau and Lougheed clash over oil sands ownership, export taxation and natural resource revenue sharing arrangements. Source: Provincial Archives of Alberta, J3672.2

    Global oil crisis heightens conflict between Alberta and Ottawa.

    Canada’s Prime Minister Pierre Elliott Trudeau and Alberta Premier Peter Lougheed, November 1, 1977; Trudeau and Lougheed clash over oil sands ownership, export taxation and natural resource revenue sharing arrangements.
    Source: Provincial Archives of Alberta, J3672.2

  • A map of Alberta shows AOSTRA/industry <em>in situ</em> pilot projects that emerge in the 1970s and 1980s.<br/> Source: Courtesy of Alberta Innovates

    Alberta Oil Sands Technology and Research Authority (AOSTRA) forms as a Crown corporation.

    A map of Alberta shows AOSTRA/industry in situ pilot projects that emerge in the 1970s and 1980s
    Source: Courtesy of Alberta Innovates

  • A news story published in the Winnipeg Tribune on February 4, 1975, reports the anticipated agreement that enables completion of the Syncrude consortium’s mega-project. Source: The Winnipeg Tribune

    Historic Winnipeg meeting between government and industry leads to agreement on Syncrude consortium mega-project.

    A news story published in the Winnipeg Tribune on February 4, 1975, reports the anticipated agreement that enables completion of the Syncrude consortium’s mega-project.
    Source: The Winnipeg Tribune

  • Syncrude operations near Mildred Lake north of Fort McMurray, late 1970s. Source: Courtesy of Syncrude Canada Ltd.

    Syncrude opens oil sands mining and bitumen upgrading mega-project in northeastern Alberta.

    Syncrude operations near Mildred Lake north of Fort McMurray, late 1970s
    Source: Courtesy of Syncrude Canada Ltd.

  • AOSTRA-sponsored technology develops through the late 1970s and early 1980s; the Cyclical Steam Stimulation (CCS) bitumen recovery process along the Peace River deposit injects steam through one well below the base of the oil sands atop the water-sand layer, resulting in a heat zone that mobilizes the overlying bitumen so that it can be pumped to the surface through a second production well. Source: Courtesy of Alberta Innovates

    Partnership between industry and the Alberta Oil Sands Technology and Research Authority (AOSTRA) leads to commercialization of in situ recovery methods.

    AOSTRA-sponsored technology develops through the late 1970s and early 1980s; the Cyclic Steam Stimulation bitumen recovery process injects steam through one well below the base of the oil sands, resulting in a heat zone that mobilizes the bitumen so that it can be pumped to the surface through a second production well.
    Source: Courtesy of Alberta Innovates

  • A diagram of AOSTRA’s Underground Test Facility operations. Source: Courtesy of Alberta Innovates

    Alberta Oil Sands Technology and Research Authority (AOSTRA) formally opens its Underground Test Facility to field test in situ oil sands mining theory including the industry-changing Steam-Assisted Gravity Drainage method (SAGD).

    A diagram of AOSTRA’s Underground Test Facility operations
    Source: Courtesy of Alberta Innovates

Play Timeline

J. M. McClave

James Mason McClave (d. 1947) was an American petroleum engineer based in Denver, Colorado, who became interested in the oil sands around 1919. He experimented with separation processes in the early 1920s, and did some lab testing for C. E. Dutcher, another American who was attempting to develop Alberta’s oil sands.

By 1926, McClave had registered patents in Canada (#234272 and #243297) and the United States (#1,594,625), related to his oil sands separation process. During this period, he was associated with the Bituminous Sand Company of Chicago. In 1929, Sidney Ells, of the federal Mines Branch, visited McClave in Denver and was impressed with what he saw. When he returned to Ottawa, Ells tried to get funding to build an oil sands separation plant near Fort McMurray using the McClave process. The response to

his request was not what he had anticipated. Charles Camsell, federal Deputy Minister of Mines and Resources, in consultation with H. M. Tory, president of the National Research Council, and
R. C. Wallace, member of Scientific and Industrial Research Council of Alberta and president of the University of Alberta, set aside Ells’s proposed use of the McClave process in a Mines Branch project in favour of a cooperative venture between the federal and provincial governments. The result was the construction of the Clearwater River plant, using Karl Clark’s hot water process.

In short order, McClave found alternate support for his process in the private sector. Max Ball, an oil geologist and lawyer, and Basil O. Jones, an investor, formed a syndicate with McClave in 1930. It was known as Canadian Northern Oil-Sand Products Limited.

McClave and Ball visited the Clearwater River plant with Clark in 1930. Initially, Ball attempted to purchase the pilot plant. The onset of the Great Depression caused investment money to dry up, and Ball could not raise $10,000 to complete the deal. When the company, re-named Abasand Oils Ltd. in 1935, finally completed construction of a plant in September 1936, it was McClave’s process that was used.

Throughout the early 1930s, McClave worked on his separation process. Two scale model plants were built, the first in Denver and the second in Toronto. He filed for patents on his “quiet zone” or “Q.Z.” separation cell in the United States and in Canada in 1934. These were granted in 1938 and 1937, respectively. He also applied for two more Canadian patents covering other aspects of his

separation process, and these were also granted in 1937.

Some aspects of the process used at the Abasand plant were similar to those of the Clearwater River plant. The oil sand was mined and then promptly conveyed to the plant, where hot water was added to form a slurry. Next, the slurry was screened to remove impurities larger than sand grains. It was at this point that McClave’s invention, the Q.Z. cell, appeared in the process. As an oily froth formed on the surface of the water, it was removed by rotating drums (McClave’s original design) or by skimming blades (as described by Ball in 1941). To reduce the mineral content and remove any remaining water from the separated oil, a diluent was added. This caused the oil to float on the water, and the minerals to sink to the bottom.

McClave’s process was successful, in that oil sand could be fed into the plant continuously, and oil would be produced continuously. However, it was not perfect, and McClave continued to observe, measure and adjust. One of its major faults, which McClave never managed to fix, was the amount of energy the process consumed to heat the water, that was then discarded rather than re-circulated.

McClave stayed with Abasand Oils Ltd. when it was taken over by the federal

government in 1943, but he did not last long. The new management decided to replace his process with an untested lower energy method, and he resigned later that year. McClave continued to be interested in the oil sands, and submitted one last patent application in 1944. This was for an invention to mine deposits inaccessible to surface excavation. His patent (Canada #434132) was granted in 1946. James Mason McClave died in 1947.

Coal Conventional Oil Turner Valley Gas Plant Natural Gas Oil Sands Bitumount Electricity & Alternative Energy