Sidney Ells at Fort McMurray
Dr. Karl Clark in his oil sands lab
Bitumen separated at the International Bitumen Company Ltd.
  • Tar Sands, Athabasca River, Alberta, n.d. Source: Geological Survey of Canada/Library and Archives Canada, PA-038166

    The Geological Survey of Canada initiates exploration of the oil sands of the Athabasca region on the part of the federal government.

    Tar Sands, Athabasca River, Alberta, n.d.
    Source: Geological Survey of Canada/Library and Archives Canada, PA-038166

  • Drilling plant at Victoria, Alberta, 1898. Source: Glenbow Archives, NA-302-11

    Drilling in search of a basement reservoir of oil is the initial focus of development in Alberta’s oil sands.

    Drilling plant at Victoria, Alberta, 1898
    Source: Glenbow Archives, NA-302-11

  • Alfred von Hammerstein on horseback, ca. 1900. Source: Glenbow Archives, PA-3920-1

    Alfred von Hammerstein is the first independent entrepreneur to attempt to capitalize on the petroleum riches of the oil sands.

    Alfred von Hammerstein on horseback, ca. 1900
    Source: Glenbow Archives, PA-3920-1

  • Sidney Ells at Clearwater River tar sands plant, August 1931. Source: Canada. Dept. of Mines and Technical Surveys/Library and Archives Canada, PA-014454

    The federal government renews its investigation of the oil sands by sending Sidney Ells to Athabasca to conduct field and survey work.

    Sidney Ells at Clearwater River tar sands plant, August 1931
    Source: Canada. Dept. of Mines and Technical Surveys/Library and Archives Canada, PA-014454

  • View of demonstration experimental pavement laid in Edmonton, Alberta, 1915. Source: Provincial Archives of Alberta, A3399

    Throughout the 1920s, efforts to commercially develop the oil sands focused upon its possible use as a paving surface for roads and sidewalks.

    View of demonstration experimental pavement laid in Edmonton, Alberta, 1915
    Source: Provincial Archives of Alberta, A3399

  • Henry Marshall Tory, the first president of the University of Alberta, was instrumental in founding the Scientific and Industrial Research Council of Alberta, n.d. Source: University of Alberta Archives, 69-152-003

    The Scientific and Industrial Research Council of Alberta is founded.

    Henry Marshall Tory, the first president of the University of Alberta, was instrumental in founding the Scientific and Industrial Research Council of Alberta, n.d.
    Source: University of Alberta Archives, 69-152-003

  • Karl Clark and Sidney Blair built a model oil sands separation plant in the basement of the University of Alberta power plant. Source: University of Alberta Archives, 69-97-457

    Karl Clark builds his first model hot-water separation plant.

    Karl Clark and Sidney Blair built a model oil sands separation plant in the basement of the University of Alberta power plant.
    Source: University of Alberta Archives, 69-97-457

  • Absher’s set-up on Saline Creek, near Fort McMurray, 1929. Source: University of Alberta Archives, 77-128-27

    Jacob Absher attempts in situ extraction of oil from oil sands.

    Absher’s set-up on Saline Creek, near Fort McMurray, 1929
    Source: University of Alberta Archives, 77-128-27

  • Prospectus for the International Bitumen Company Ltd., n.d. Source: Provincial Archives of Alberta, PR1971.0356.544a,b.ProspectusOf.IBC.1

    Robert Fitzsimmons founds the International Bitumen Company Ltd.

    Prospectus for the International Bitumen Company Ltd., n.d.
    Source: Provincial Archives of Alberta, PR1971.0356.544a,b.ProspectusOf.IBC.1

  • Karl Clark’s third model plant is relocated to the Clearwater River. Sidney Ells is placed in charge of mining operations. Source: University of Alberta Archives, 77-128-13

    Federal and provincial governments cooperate to develop Clearwater River oil sands separation plant.

    Karl Clark’s third model plant is relocated to the Clearwater River. Sidney Ells is placed in charge of mining operations.
    Source: University of Alberta Archives, 77-128-13

  • Max Ball, ca. 1940. Source: University of Alberta Archives, 89-120-008

    Max Ball, J.M. McClave and B.O. Jones of Denver, Colorado, organize Abasand Oils Ltd.

    Max Ball, ca. 1940
    Source: University of Alberta Archives, 89-120-008

  • Abasand Oils Ltd. plant, ca. 1941. Source: Provincial Archives of Alberta, PR1985.0333.DevelopmentofAthabaska.O.S.DeskCopy.021 - detail

    Construction of Abasand Oils Ltd. oil sands separation plant on Horse River is completed.

    Abasand Oils Ltd. plant, ca. 1941
    Source: Provincial Archives of Alberta, PR1985.0333.DevelopmentofAthabaska.O.S.DeskCopy.021 - detail

  • Little was left of the Abasand plant after the fire. Source: University of Alberta, 84-25-132

    Abasand Oils Ltd. oil sands separation plant burns down.

    Little was left of the Abasand plant after the fire.
    Source: University of Alberta, 84-25-132

  • The completed Alberta Government Oil Sands Project plant, ca. 1950. Source: University of Alberta, 91-137-070 - detail

    Alberta Government Oil Sands Project Plant at Bitumount succeeds in separating crude oil from oil sands.

    The completed Alberta Government Oil Sands Project plant, ca. 1950
    Source: University of Alberta, 91-137-070 - detail

  • Cover of Sidney Blair’s Report on the Alberta Bituminous Sands commissioned by the Government of Alberta, 1950. Source: Provincial Archives of Alberta, PR1971.0345.box24.503

    Alberta government issues report on oil sands potential.

    Cover of Sidney Blair’s Report on the Alberta Bituminous Sands commissioned by the Government of Alberta, 1950
    Source: Provincial Archives of Alberta, PR1971.0345.box24.503

  • Sidney Kidder, Sidney Blair, George Hume, and Elmer Adkins (l to r) at the Edmonton portion of the Athabasca Oil Sands Conference at the University of Alberta, 1951. Source: Provincial Archives of Alberta, PA3152

    Athabasca Oil Sands Conference establishes an Alberta oil sands policy and stimulates commercial interest in the resource.

    Sidney Kidder, Sidney Blair, George Hume, and Elmer Adkins (l to r) at the Edmonton portion of the Athabasca Oil Sands Conference at the University of Alberta, 1951
    Source: Provincial Archives of Alberta, PA3152

  • Montreal-businessman Lloyd Champion incorporates Great Canadian Oil Sands Ltd. (GCOS) in 1953. Champion later sells most of his shares in the company before the GCOS plant opens under Sun Oil Company’s financing and leadership. Source: Courtesy of University of Alberta Archives, #83-160

    Great Canadian Oil Sands Ltd. incorporates.

    Montreal-businessman Lloyd Champion incorporates Great Canadian Oil Sands Ltd. (GCOS) in 1953. Champion, shown here ca. 1960s, later sells most of his shares in the company before the GCOS plant opens under Sun Oil Company’s financing and leadership.
    Source: University of Alberta Archives, #83-160

  • A cross-section of the Cold Lake area deposit shows the depth of the oil sands layer that makes the bitumen in this deposit recoverable only through in situ extraction methods. Source: Courtesy of Alberta Innovates

    Early in situ pilot tests begin on the Peace River and Cold Lake area oil sands deposits; underground experiments along the Cold Lake deposit lead to the development of the Cyclical Steam Stimulation (CCS) bitumen recovery method.

    A cross-section of the Cold Lake area deposit shows the depth of the oil sands layer that makes the bitumen in this deposit recoverable only through in situ extraction methods.
    Source: Courtesy of Alberta Innovates

  • Great Canadian Oil Sands Ltd. plant during its first week of operation, north of Fort McMurray, Alberta, 1967. Source: Courtesy of Suncor

    Great Canadian Oil Sands Ltd. begins production.

    Great Canadian Oil Sands Ltd. plant during its first week of operation, north of Fort McMurray, Alberta, 1967
    Source: Courtesy of Suncor

  • Canada’s Prime Minister Pierre Elliott Trudeau and Alberta Premier Peter Lougheed, November 1, 1977; Trudeau and Lougheed clash over oil sands ownership, export taxation and natural resource revenue sharing arrangements. Source: Provincial Archives of Alberta, J3672.2

    Global oil crisis heightens conflict between Alberta and Ottawa.

    Canada’s Prime Minister Pierre Elliott Trudeau and Alberta Premier Peter Lougheed, November 1, 1977; Trudeau and Lougheed clash over oil sands ownership, export taxation and natural resource revenue sharing arrangements.
    Source: Provincial Archives of Alberta, J3672.2

  • A map of Alberta shows AOSTRA/industry <em>in situ</em> pilot projects that emerge in the 1970s and 1980s.<br/> Source: Courtesy of Alberta Innovates

    Alberta Oil Sands Technology and Research Authority (AOSTRA) forms as a Crown corporation.

    A map of Alberta shows AOSTRA/industry in situ pilot projects that emerge in the 1970s and 1980s
    Source: Courtesy of Alberta Innovates

  • A news story published in the Winnipeg Tribune on February 4, 1975, reports the anticipated agreement that enables completion of the Syncrude consortium’s mega-project. Source: The Winnipeg Tribune

    Historic Winnipeg meeting between government and industry leads to agreement on Syncrude consortium mega-project.

    A news story published in the Winnipeg Tribune on February 4, 1975, reports the anticipated agreement that enables completion of the Syncrude consortium’s mega-project.
    Source: The Winnipeg Tribune

  • Syncrude operations near Mildred Lake north of Fort McMurray, late 1970s. Source: Courtesy of Syncrude Canada Ltd.

    Syncrude opens oil sands mining and bitumen upgrading mega-project in northeastern Alberta.

    Syncrude operations near Mildred Lake north of Fort McMurray, late 1970s
    Source: Courtesy of Syncrude Canada Ltd.

  • AOSTRA-sponsored technology develops through the late 1970s and early 1980s; the Cyclical Steam Stimulation (CCS) bitumen recovery process along the Peace River deposit injects steam through one well below the base of the oil sands atop the water-sand layer, resulting in a heat zone that mobilizes the overlying bitumen so that it can be pumped to the surface through a second production well. Source: Courtesy of Alberta Innovates

    Partnership between industry and the Alberta Oil Sands Technology and Research Authority (AOSTRA) leads to commercialization of in situ recovery methods.

    AOSTRA-sponsored technology develops through the late 1970s and early 1980s; the Cyclic Steam Stimulation bitumen recovery process injects steam through one well below the base of the oil sands, resulting in a heat zone that mobilizes the bitumen so that it can be pumped to the surface through a second production well.
    Source: Courtesy of Alberta Innovates

  • A diagram of AOSTRA’s Underground Test Facility operations. Source: Courtesy of Alberta Innovates

    Alberta Oil Sands Technology and Research Authority (AOSTRA) formally opens its Underground Test Facility to field test in situ oil sands mining theory including the industry-changing Steam-Assisted Gravity Drainage method (SAGD).

    A diagram of AOSTRA’s Underground Test Facility operations
    Source: Courtesy of Alberta Innovates

Play Timeline

Jacob Absher

Of the several varieties of in situ techniques that have been tested, those involving heat seem to work the best. Some commercial projects inject high-pressure steam into the formations, while others actually ignite the oil where it lies underground. Both of these serve to reduce the viscosity of the oil, which can then be pumped to the surface for recovery. Both approaches were tried by Jacob Owen Absher, the most persistent early experimenter with underground in situ techniques. Absher was an oil expert from Montana, who had come to Alberta to ply his expertise. While his experiments ultimately failed to bring him prosperity or success, they were important for attracting the attention of others.

Absher’s process was first tested in 1926 and seems to have met with some success. His strategy was to use steam to transfer heat into the sands in order to liquefy the oil. Superheated steam was forced into the sands through a perforated pipe sunk to the bottom of the formation. A narrower pipe was inserted

into the perforated one to provide an outlet for the separated oil that would be forced upwards by the steam. In theory, this contraption would collect the oil from within a 15 m (50 ft.) radius.

Experiments with Absher’s process continued to look promising through the 1927 drilling season. At the end of that time, one member of the drilling crew reported that “we succeeded in bringing up vast amounts of sand and tar which flung itself over the countryside in much the same manner as a gusher.” As complications arose, adjustments were made. A significant challenge was that of generating the superheated steam, an expensive process. Absher’s solution was to dispense with the steam and just set fire directly to the bitumen at the base of his drill pipe. In the course of testing this innovation in 1928, Absher was severely burned by hot oil that erupted unexpectedly up through the pipe. Neither hospitalization nor recovery time dissuaded this persistent figure. He returned to experimentation in 1929.

Controlling the combustion process was Absher’s greatest difficulty. In one 1929 test, the fire he lit in a bore hole burned for two days. Its heat was so intense—1,088°C (2,000°F)—that the well was destroyed. Nonetheless, his efforts drew the interest of Sidney Ells and Karl Clark, both important figures in the development of the oil sands, who watched Absher from the sidelines and learned from his difficulties. Clark did not have high hopes for the success of Absher’s process, but he was “very much impressed with Absher [himself]. He is a real researcher in spirit and outlook. And he is a most ingenious fellow…[a] persevering, resourceful, enthusiastic worker.”

In the end, Absher was unable to wrest oil in commercial quantities from the ground. Nor was he able to interest other companies in providing financial support for his quest to develop an effective and efficient in situ technique. The comfortable world supply of oil combined with the economic downturn during the Great Depression brought Absher’s experiments to an end in the early 1930s. It simply was not feasible to continue experimentation with a resource that was as obstinate and as remote as Alberta’s oil sands. Yet Absher should be recognized as an important oil sands pioneer in the techniques that did eventually transform the industry and unlock the resource from its sandy context.

Coal Conventional Oil Turner Valley Gas Plant Natural Gas Oil Sands Bitumount Electricity & Alternative Energy