Drilling for gas
Eugene Coste with a drilling crew
Old Glory gas well
  • Gas Town of the West<br/> Source: Image courtesy of Peel’s Prairie Provinces, a digital initiative of the University of Alberta, PC010811

    Alberta’s first natural gas discovery in Langevin eventually leads to the designation of Medicine Hat as the “Gas Town of the West.”

    Gas Town of the West
    Source: Image courtesy of Peel’s Prairie Provinces, a digital initiative of the University of Alberta, PC010811

  • Gas well blowing at Bow Island, Alberta<br/> Source: Glenbow Archives, NA-4048-4

    At Bow Island, Alberta, the largest gas well drilled in Canada to date is directed by Eugene Coste, the “father of the natural gas industry.”

    Gas well blowing at Bow Island, Alberta
    Source: Glenbow Archives, NA-4048-4

  • Pipe for gas line, Bow Island area, Alberta, 1913 Source: Glenbow Archives, NA-4048-1

    Eugene Coste builds a 270-km (168-mi.) long pipeline, one of the longest and largest pipelines at that time, to carry Bow Island gas to Calgary and Lethbridge.

    Pipe for gas line, Bow Island area, Alberta, 1913
    Source: Glenbow Archives, NA-4048-1

  • Turner Valley Discovery Well Blowing, 1914<br/>Source: Provincial Archives of Alberta, P1883

    Natural gas wet with condensate is first discovered in the Cretaceous level at Turner Valley with the Dingman No. 1 well by Calgary Petroleum Products, the company originally founded by William Stewart Herron.

    Turner Valley Discovery Well Blowing, 1914
    Source: Provincial Archives of Alberta, P1883

  • Edmonton Gas Well, Viking, Alberta, ca. 1914<br/> Source: Glenbow Archives, NA-1328-66092

    Edmonton finds a natural gas supply in Viking, Alberta, but delays development due to war-related anxieties.

    Edmonton Gas Well, Viking, Alberta, ca. 1914
    Source: Glenbow Archives, NA-1328-66092

  • Original Royalite absorption, compression and scrubbing plant, ca. 1926<br/> Source: Provincial Archives of Alberta, P1882

    Royalite Oil Company Ltd., a wholly-owned subsidiary of Imperial Oil, gains entry to Turner Valley and begins an aggressive campaign to dominate petroleum production there.

    Original Royalite absorption, compression and scrubbing plant, ca. 1926
    Source: Provincial Archives of Alberta, P1882

  • Pipeline at MacDougall Avenue, Edmonton, Alberta, 1923<br/> Source: Glenbow Archives, ND-3-2062

    Edmonton, Alberta, receives its first delivery of natural gas from the Viking-Kinsella field that had been discovered in 1914.

    Pipeline at MacDougall Avenue, Edmonton, Alberta, 1923
    Source: Glenbow Archives, ND-3-2062

  • Burning Gas at Royalite No. 4, Hell’s Half Acre, Turner Valley, Alberta, 1924<br/> Source: Glenbow Archives, ND-8-430

    Royalite Oil punctures the gas condensate reservoir in the Mississippian rock formation at Turner Valley, and Royalite No. 4 erupts in fire.

    Burning Gas at Royalite No. 4, Hell’s Half Acre, Turner Valley, Alberta, 1924
    Source: Glenbow Archives, ND-8-430

  • In December 1929, Mackenzie King signs natural resources transfer agreement prior to the passage of legislation in 1930<br/> Source: Provincial Archives of Alberta, A10924

    The Canadian federal government transfers control of natural gas and other natural resources to the provincial Government of Alberta through the Natural Resources Transfer Acts of 1930.

    In December 1929, Mackenzie King signs natural resources transfer agreement prior to the passage of legislation in 1930.
    Source: Provincial Archives of Alberta, A10924

  • An Act for the Conservation of the Oil and Gas Resources of the Province of Alberta<br/> Source: <em>The Oil and Gas Conservation Act</em>, SA 1938, c. 15

    Oil and Gas Resources Conservation Act becomes law, and the Petroleum and Natural Gas Conservation Board, now the Energy Utilities Board, is formed as the regulatory authority for all gas and oil operations.

    An Act for the Conservation of the Oil and Gas Resources of the Province of Alberta
    Source: The Oil and Gas Conservation Act, SA 1938, c. 15

  • Shell Oil Jumping Pound Gas plant, 1952<br/> Source Provincial Archives of Alberta, P3009

    The largest gas reservoir in Canada at the time of discovery, the Jumping Pound field becomes a symbol of the need to resolve the stalemate over whether or not Alberta should export its natural gas; without adequate markets, it remains shut in until 1951.

    Shell Oil Jumping Pound Gas plant, 1952
    Source Provincial Archives of Alberta, P3009

  • But of course! Gas The Modern Fuel! In the years following World War II, the development and use of natural gas skyrockets due, in part, to rigorous marketing.<br/> Source: City of Edmonton Archives, EA-275-1776

    Efforts to promote natural gas as a safe, clean alternative to coal help the market expand rapidly, and large-scale processing and pipeline projects are constructed to serve the growing market.

    But of course! Gas The Modern Fuel! In the years following World War II, the development and use of natural gas skyrockets due, in part, to rigorous marketing.
    Source: City of Edmonton Archives, EA-275-1776

  • Handling sulfur at Madison natural gas facility, Turner Valley, 1952<br/> Source: Provincial Archives of Alberta, P2973

    In 1952, facilities in both Turner Valley and Jumping Pound begin to convert the toxic hydrogen sulfide in sour gas into benign elemental sulfur, and by the 1970s Canada becomes the largest exporter of sulfur in the world.

    Handling sulfur at Madison natural gas facility, Turner Valley, 1952
    Source: Provincial Archives of Alberta, P2973

  • <em>An Act to Incorporate a Gas Trunk Pipe Line Company to Gather and Transmit Gas within the Province</em><br/> Source: <em>The Alberta Gas Trunk Line Company Act</em>, SA 1954, c. 37

    Alberta Trunk Line Company is established in order to gather and transmit Alberta’s natural gas for domestic consumption as well as for export outside of the province.

    An Act to Incorporate a Gas Trunk Pipe Line Company to Gather and Transmit Gas within the Province
    Source: The Alberta Gas Trunk Line Company Act, SA 1954, c. 37

  • TransCanada Pipeline<br/> Source: Provincial Archives of Alberta, P1355

    TransCanada Pipeline exports the first gas piped to eastern Canada over a single pipeline, longer than any other single length of pipeline in North America at that time.

    TransCanada Pipeline
    Source: Provincial Archives of Alberta, P1355

  • Tom Adams (l) and Stan Jones (r)<br/> Source: Courtesy of Gwen Blatz

    Tom Adams and Stan Jones found the Meota Gas Co-operative, the first in what becomes a widespread movement to provide gas service throughout Alberta’s rural areas.

    Tom Adams (l) and Stan Jones (r)
    Source: Courtesy of Gwen Blatz

  • Just relax...we're just going to take a sample. November 14, 1980<br/> Source: Glenbow Archives, M-8000-710

    Prime Minister Trudeau introduces the national Energy Program (NEP), which sets prices for oil and gas well below international prices.

    “Just relax...we’re just going to take a sample.” November 14, 1980
    Source: Glenbow Archives, M-8000-710

  • Amoco sour gas blowout at Lodgepole near Drayton Valley, 1982<br/> Source: Provincial Archives of Alberta, J3747-1

    The Lodgepole sour gas blowout smells up the air for weeks, highlighting a growing conflict between the desire for economic development and the need to safeguard the public.

    Amoco sour gas blowout at Lodgepole near Drayton Valley, 1982
    Source: Provincial Archives of Alberta, J3747-1

  • Tied in coal bed methane (CBM) well, Ponoka, Alberta<br/> Source: Courtesy of Encana Corporation

    As conventional sources of natural gas have matured and declined, the industry has increasingly focused its efforts on developing unconventional gas resources such as shale gas, tight gas and coal bed methane.

    Tied in coal bed methane (CBM) well, Ponoka, Alberta
    Source: Courtesy of Encana Corporation

Play Timeline

The Industrial Revolution Creates a Market

The Industrial Revolution that began in England in the latter part of the eighteenth century and spread throughout the societies of Great Britain, Europe, and North America was increasingly fuelled by gas. In transforming agrarian societies and their handicraft-based economies to industrial societies relying upon machine manufacture, the Industrial Revolution illustrated the relative thrift and ease of using gas as a dependable, lasting source of light and power. In short, gas permitted greater productivity in the workplace. Yet without a reliable system of capturing, containing, transporting and delivering the natural gas beneath the Earth’s surface, people had to make their

own gas, so-called “manufactured gas.”

Unlike natural gas, coal, a sibling fossil fuel, possesses a tactile, physical reality. It can be seen with the eye, physically extracted from the Earth with hands and tools, and then loaded into a wagon and carried somewhere. Coal can be heated inside an enclosed oven, or retort, to produce gas on the spot. Thus, well into the nineteenth century, most gas used by industry, as well as for domestic heating and lighting, was manufactured gas created from heating coal. The quest for coal, therefore, became paramount as it was seen as the key to economic viability in the new industrial age.

The first gas utility was chartered in London in 1812, and during the 1820s additional utilities were established throughout Great Britain, Europe and North America. Wanting to cast itself as a competitor to other urban and industrial centers, Montreal founded its Montreal Gas Light Company in 1836, and other Canadian cities soon followed (Toronto – 1842, Halifax – 1843).

Coal is not the only source of manufactured gas. Other experiments in producing an inexpensive and reliable gas include those undertaken by the Canadian Dr. Abraham Gesner in the 1840s. Gesner’s vocation may have been medicine, but his passion seems to have been geology. Using a pile of

bitumen he had collected from La Brea Pitch Lake in Trinidad, he began the experiments that led eventually to his being called the “Father of the Modern Petroleum Industry.” His attempts to produce a reliable and lasting light eventually resulted in a process and the equipment for the “manufacture of illuminating-gas from bitumen.” He was the first-known person to distill a liquid lamp fuel from a hydrocarbon source, a fuel he named kerosene. It is also interesting to note that his work is sometimes credited with having saved the whales, as kerosene was a much more efficient lamp fuel than the whale oil then standard.

In this Section

Jean Baptiste van Helmont

The first person to recognize the existence of vaporous substances distinct from the atmosphere we breathe was the Flemish scientist Jean Baptiste van Helmont.

Robert Bunsen and the Bunsen Burner

Although the Bunsen burner is the innovation for which Robert Bunsen is most widely known, it was not his most significant scientific legacy.

Coal Conventional Oil Turner Valley Gas Plant Natural Gas Oil Sands Bitumount Electricity & Alternative Energy